144. X-Ray Crystallographic and MO Studies on the Conformation of Corynoline and the Related Compounds

by Miyoko Kamigauchi*, Yuko Noda, and Narao Takao

Kobe Women's College of Pharmacy, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe 658, Japan

and Toshimasa Ishida and Masatoshi Inoue

Osaka College of Pharmacy, 2-10-65 Kawai, Matsubaracity, Osaka 580, Japan

(15.V.86)

The crystal structure of (\pm) -corynoline (1) has been determined by X-ray diffraction methods. The rings B and C form the half-chair and the twist-half-chair conformations, respectively. The B/C ring conjunction exists in an *anti-cis* conformation, with a N···H-O intramolecular H-bond. Conformational energy calculation by the CNDO/2 method show that the conformations of 1, (+)-chelidonine (2), and their acetates, observed in crystal structures, are all in the one of total energy minimum.

Introduction. – The biologically important compounds (\pm) -corynoline (1) and (+)chelidonine (2) belong to the hydrobenzo[c]phenanthridine alkaloids class [1]. Alkaloid 2 was first isolated from *Chelidonium majus* (Papaveraceae) in 1839 [2], and 1 from *Corydalis incisa* (Papaveraceae) in 1962 [3], and extensive chemical and spectroscopic studies led to the corresponding structures [4] [5].

Previous investigations on the conformations of hydrobenzo[c]phenanthridine alkaloids have dealt extensively with the axial/equatorial orientation of C(11)–O group and with the half-chair/half-boat form of rings B and C in solution, using IR and NMR spectroscopic methods [6].

While the *cis*-fused B/C moiety of these alkaloids has a flexibility so that it can exist in two conformers, *anti-cis* and *syn-cis* [7], little attention has been paid to this aspect. Generally, the *syn-cis* conformer is regarded to have higher energy than the *anti-cis* conformer. When the X-ray structure determination of (+)-chelidonine-*p*-bromoben-zoate (3) was carried out in 1979 [7], however, 3 was found to be the *syn-cis* conformer.

The aim of the present study is firstly to determine the molecular structure of 1 by X-ray analysis in order to obtain the typical model compound in *anti-cis* conformation, and secondly to estimate the total-energy values for *syn-cis* and *anti-cis* conformers of 1, 2, (\pm) -corynoline-acetate (4), and (+)-chelidonine-acetate (5).

Experimental. -- Crystal Structure Determination and Refinement. (\pm)-Corynoline (1) was isolated from Corydalis incisa in the usual way. Transparent prismatic crystals of 1 were grown from AcOEt/MeOH/H₂O, m.p. 216-217°. Single crystal (ca. 0.2 × 0.2 × 0.2 mm) was used for X-ray studies. Preliminary photographs showed the crystal to be triclinic with space group P1 or $P\bar{1}$. The distribution of the normalized E coefficients indicated $P\bar{1}$. Crystallographic data are shown in Table 1.

Formula	C ₂₁ H ₂₁ NO ₅	Cell	a [Å]	12.369(2)	V [Å ³]	865.6
Mol.wt.	367.401	Constants	b [Å]	9.960(1)	Z	2
M.p. [°]	216-217		c [Å]	7.490(1)	$d_{\rm x} [\rm g \cdot \rm cm^{-3}]$	1.409(1)
Crystal system	Triclinic		α[°]	101.89(1)	$d_{\rm m} [{\rm g} \cdot {\rm cm}^{-3}]$	1.398(1)
Space group	ΡĪ		β	101.74(1)	F (000)	194
			y	78.29(1)	Radiation	CuK_{α}
	_		-		λ [Å]	1.5405

Table 1. Crystal Data of (\pm) -Corynoline (1)

The density was measured by flotation in KI soln. Three-dimensional intensity data were collected using the *Rigaku-Denki* automatic four-circle diffractometer using graphite-monochromated Cu K_{χ} radiation at r.t. The observed intensities of 2966 independent reflexions with $\sin \theta / \lambda \leq 0.60$ Å⁻¹ by the ω -2 θ scan technique were corrected for *Lorentz* and polarization factors, but not for absorption. Standard reflections, measured for every 50 reflections of the data set, showed no deterioration in intensity during the run. The scan speed was 1°/min and the background was taken for 5 s.

The structure was solved by direct methods with the MULTAN program and refined by full-matrix leastsquares analysis with isotropic thermal parameters. From a difference map, the positions of all 21 H-atoms were clearly shown. The final least-squares refinement was computed with anisotropic temp. factors for non-H-atoms and with isotropic temp. factors for H-atoms. The final *R* value is 0.068. The structure refinements were carried out using the UNICS program with atomic scattering factors from *International Tables for X-Ray Crystallography*.

Conformational Energy Calculation. The method utilized in the computation was the molecular-orbital CNDO/2 procedure. Compounds 1, 2, 4, 5, and 6–9 were investigated for syn- and anti-type conformers. The atomic parameters of these conformers were based on the torsion angles obtained by the X-ray analyses of 1, 3, and 10 [8]. The bond lengths and angles of the common C-skeleton about two conformers were taken from the present 1, because the discrepancy R value was the lowest for 1, compared to other compounds.

All numerical calculations were carried out on an ACOS-900 computer of the Computation Center of Osaka University.

Fig. 1. The molecular structure of 1

Bond lengths [Å]			
N(5)-C(6)	1.469(3)	C(11)-C(13)	1.549(4)
N(5)-C(14)	1.488(3)	C(11)-O(5)	1.417(3)
N(5)-C(22)	1.462(4)	C(13)-C(14)	1.551(3)
C(11)C(12)	1.522(4)	C(13)–C(21)	1.529(4)
Bond angles [°]			
C(6)-N(5)-C(14)	108.2(2)	C(11)-C(12)-C(15)	115.6(3)
C(6)-N(5)-C(22)	107.7(2)	C(11)-C(13)-C(14)	109.3(2)
C(14)-N(5)-C(22)	114.9(2)	C(11)-C(13)-C(21)	109.6(2)
N(5)-C(6)-C(18)	111.0(2)	C(14)-C(13)-C(17)	111.1(2)
C(12)-C(11)-C(13)	112.0(2)	N(5)-C(14)-C(13)	108.5(2)
C(12)-C(11)-O(5)	111.8(2)	C(13)-C(14)-C(16)	111.0(2)
C(13)-C(11)-O(5)	112.2(2)	N(5)-C(14)-C(16)	112.9(2)

Table 2. Bond Lengths and Angles (standard deviations in parentheses)

Results and Discussion. – Molecular Structure of (\pm) -Corynoline (1). The (\pm) -corynoline (1) molecule projected on the ring-A plane is presented in Fig. 1, along with the atomic numbering. Bond lengths and angles for non-H-atoms with their standard deviations are given in Table 2. Coordinates and thermal parameters of non-H-atoms with their standard deviations are given in Table 3. The coordinates and thermal parameters for H-atoms are shown in Table 4.

Table 4. H-Atom Coordinates and Isotropic Temperature Factors. Standard deviations in parentheses.

Atom	x	у	Ζ	В	Atom	x	у	z	B
H(1)	0.538(3)	0.550(4)	0.217(5)	3.3(8)	H(12)	0.466(2)	0.834(2)	0.240(3)	0.3(5)
H(2)	0.355(3)	0.179(4)	-0.099(6)	5.0(9)	H(13)	0.528(3)	0.781(3)	0.444(5)	3.0(7)
H(3)	0.411(3)	0.125(4)	0.095(5)	4.0(8)	H(14)	0.141(2)	0.784(2)	0.375(3)	0.4(5)
H(4)	0.165(3)	0.540(3)	0.289(4)	2.1(6)	H(15)	0.288(3)	0.587(3)	0.653(5)	3.0(7)
H(5)	0.060(2)	0.862(3)	0.642(4)	1.7(6)	H(16)	0.157(3)	0.625(4)	0.639(5)	3.2(7)
H(6)	0.147(2)	0.901(3)	0.842(4)	1.1(5)	H(17)	0.239(3)	0.678(3)	0.849(4)	2.2(6)
H(7)	0.067(3)	1.309(4)	1.120(5)	5.0(9)	H(18)	0.252(3)	0.838(3)	0.116(5)	3.1(7)
H(8)	-0.071(3)	1.361(4)	0.999(5)	4.0(7)	H(19)	0.243(3)	1.004(4)	0.175(5)	3.7(8)
H(9)	0.138(3)	1.385(4)	0.561(5)	3.3(8)	H(20)	0.141(3)	0.940(3)	0.163(5)	2.9(7)
H(10)	0.225(3)	1.192(3)	0.379(4)	2.5(7)	H(21)	0.375(3)	0.870(4)	0.700(5)	3.4(8)
H(11)	0.401(2)	0.999(3)	0.452(4)	1.8(6)					

Fig. 2. Schematic projection of rings B and C. Deviations of atoms from the least-squares planes of aromatic ring. The thick bar stands for the aromatic ring, indicating ring A in (a) and ring D in (b). Deviations in Å, with e.s.d.'s in parentheses.

. The anisotropic temperature factors	
Table 3. Atomic Coordinates and Anisotropic Thermal Parameters of Non-H-Atoms. Estimated standard deviations in parenthes	expressed in the following form: $\exp[-(B_{11}h^2 + B_{22}h^2 + B_{13}h^2 + B_{$

are

		ndva					-73m /J-		
Atom	x	y	2	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
C(1)	0.4670(2)	0.5427(3)	0.2341(4)	0.0045(2)	0.0091(3)	0.0229(6)	-0.0020(4)	0.0086(5)	0.0026(7)
C(2)	0.4208(2)	0.4255(3)	0.1742(4)	0.0054(2)	0.0077(3)	0.0186(6)	-0.0006(4)	0.0080(5)	0.0026(6)
C(3)	0.3132(2)	0.4213(3)	0.1971(4)	0.0055(2)	0.0070(3)	0.0172(5)	-0.0036(4)	0.0059(5)	0.0003(6)
C(4)	0.2486(2)	0.5355(2)	0.2823(4)	0.0047(2)	0.0070(3)	0.0184(5)	-0.0031(3)	0.0062(5)	0.0011(6)
C(6)	0.1405(2)	0.8941(2)	0.7083(3)	0.0057(2)	0.0061(2)	0.0149(5)	-0.0019(3)	0.0066(5)	0.0019(5)
C(7)	0.0946(2)	1.1537(2)	0.7676(3)	0.0046(2)	0.0069(3)	0.0165(5)	-0.0030(3)	0.0044(5)	0.0008(6)
C(8)	0.0934(2)	1.2836(3)	0.7330(4)	0.0052(2)	0.0060(3)	0.0235(6)	-0.0021(3)	0.0061(5)	0.0003(6)
C(9)	0.1413(3)	1.3015(3)	0.5936(5)	0.0083(2)	0.0060(3)	0.0295(8)	-0.0031(4)	0.0097(7)	0.0067(7)
C(10)	0.1923(2)	1.1820(3)	0.4888(4)	0.0069(2)	0.0076(3)	0.0224(6)	-0.0039(4)	0.0082(6)	0.0070(7)
C(11)	0.3836(2)	0.9182(3)	0.4780(4)	0.0047(2)	0.0073(3)	0.0200(6)	-0.0047(3)	0.0049(5)	0.0023(6)
C(12)	0.4527(2)	0.7940(3)	0.3736(5)	0.0045(2)	0.0090(3)	0.0316(8)	-0.0053(4)	0.0088(6)	-0.0016(8)
C(13)	0.2563(2)	0.9214(2)	0.4118(3)	0.0045(2)	0.0063(2)	0.0160(5)	-0.0042(3)	0.0042(4)	0.0016(6)
C(14)	0.2241(2)	0.7857(2)	0.4411(3)	0.0037(2)	0.0063(2)	0.0148(5)	-0.0029(3)	0.0033(4)	0.0016(5)
C(15)	0.4038(2)	0.6617(3)	0.3237(4)	0.0044(2)	0.0078(3)	0.0193(6)	-0.0035(3)	0.0054(5)	0.0015(6)
C(16)	0.2955(2)	0.6582(2)	0.3488(3)	0.0042(2)	0.0068(3)	0.0155(5)	-0.0028(3)	0.0042(4)	0.0016(6)
C(17)	0.1938(2)	1.0498(2)	0.5226(3)	0.0045(2)	0.0065(2)	0.0152(5)	-0.0032(3)	0.0029(4)	0.0030(6)
C(18)	0.1431(2)	1.0333(2)	0.6660(3)	0.0042(2)	0.0062(2)	0.0144(5)	-0.0028(3)	0.0021(4)	0.0014(5)
C(19)	0.0138(3)	1.3095(3)	0.9849(4)	0.0073(2)	0.0074(3)	0.0236(7)	-0.0021(4)	0.0078(6)	-0.0016(7)
C(20)	0.3803(3)	0.2142(3)	0.0407(5)	0.0067(2)	0.0085(3)	0.0262(7)	-0.0021(4)	0.0097(6)	-0.0038(7)
C(21)	0.2273(2)	0.9287(3)	0.2053(4)	0.0074(2)	0.0099(3)	0.0159(5)	-0.0061(4)	0.0054(5)	0.0040(7)
C(22)	0.2270(3)	0.6583(3)	0.6952(4)	0.0092(3)	0.0060(3)	0.0222(6)	-0.0007(4)	0.0107(7)	0.0068(7)
N(5)	0.2329(2)	0.7900(2)	0.6432(3)	0.0050(1)	0.0056(2)	0.0153(4)	-0.0017(3)	0.0045(4)	0.0033(5)
O(1)	0.0384(2)	1.3830(2)	0.8569(3)	0.0081(2)	0.0061(2)	0.0308(5)	-0.0007(3)	0.0144(5)	-0.0021(5)
0(2)	0.0398(2)	1.1637(2)	0.9151(3)	0.0070(1)	0.0073(2)	0.0216(4)	-0.0022(3)	0.0116(4)	-0.0009(5)
0(3)	0.4651(2)	0.2993(2)	0.0797(3)	0.0075(2)	0.0069(2)	0.0314(6)	-0.0005(3)	0.0162(5)	-0.0008(5)
O(4)	0.2862(2)	0.2916(2)	0.1232(3)	0.0074(2)	0.0066(2)	0.0297(5)	-0.0043(3)	0.0149(5)	-0.0050(5)
0(5)	0.4139(2)	0.9254(2)	0.6722(3)	0.0054(1)	0.0117(2)	0.0206(4)	-0.0065(3)	-0.0014(4)	0.0049(5)

All bond lengths and angles are normal and in the range found in the crystal structures of hydrobenzo[c]phenanthridine-type alkaloids and related protoberberine-type alkaloids [9]. The dihedral angle between the mean planes of rings A and D is 46.79°.

Ring B is in a half-chair conformation, and ring C is in a twist-half-chair conformation (*Fig. 2*). A relaxation of 1,3-diaxial interaction between the bonds C(14)-N(5) and C(11)-O(5) seems to be the reason for its twist-half-chair conformation of the ring C.

The torsion angle between the aromatic rings A and D in the *Newman* projection (C(13)-C(14)) is 173.6°. This value shows that the conformation of B/C-ring moiety forms an *'anti-cis'*-type conformation (*Fig. 3*).

Fig. 3. Torsion angles [°] with standard deviations about the bond C(13) - C(14)

(±)-Corynoline (1) contains an axial OH-group at C(11) and an equatorial N-CH₃ group. An intramolecular H-bond is formed between the OH group and the N-atom. The N(5) \cdots O(5) distance is 2.79 Å. This result agrees with that found for 1 on the basis of IR- and NMR-spectroscopic data [6].

Conformational Energy Values. – *Table 5* shows the total-energy values of *anti-cis* and *syn-cis* conformers for 1, 2, 4, 5, and 6-9 by CNDO/2 calculations. The differences between the total energies for the two conformers of all compounds are 20–30 kcal/mol. In fact, the crystallographic and spectroscopic results show that 2, 1 and its 4 are in *anti-cis* conformation, and only (+)-chelidonine-acetate (5) takes *syn-cis* conformation in solution and the solid state.

Com-	Total energy [kcal/mol]		Δ	Preferred	Ref.
pound	anti	syn	anti-syn	conformation	
1	-169 149.69	-169120.70	28.99	anti	This work
2	-163761.21	-163730.71	30.50	anti	[6]
4	-190625.81	-190 598.77	27.04	anti	[6] [11]
5	-185186.38	-185207.77	21.40	syn	[6] [7]
6	-113716.79	-113688.49	28.30	anti	
7	-135185.13	-135159.65	25.48	anti	
8	-108329.69	-108301.70	27.99	anti	
9	-129749.15	-129772.80	23.66	syn	

Table 5. CNDO/2 Conformational Energy Values

Compounds 1 and 2 are slightly more stable than their acetates, possibly because of the intramolecular H-bond in 1 and 2. According to *Lippincott-Schroeder*'s equation [10], it would correspond to the energy of 7 kcal/mol. The H-bond may also be partly responsible for the predominance of the *anti-cis* conformer for 1 and 2. But the fact that (\pm) -corynoline-acetate (4) also takes *anti-cis*-conformation shows that other factors must also be involved.

REFERENCES

- [1] M. Shamma, J. L. Moniot, in 'Isoquinoline Alkaloids Research', Plenum Press, New York, 1978, pp. 271–292.
- [2] J. M. Probst, Ann. Pharm. 1839, 29, 113.
- [3] C. Tani, N. Takao, Yakugaku Zasshi 1962, 82, 594.
- [4] N. Takao, Chem. Pharm. Bull. (Tokyo) 1963, 11, 1306; N. Takao, ibid. 1963, 11, 1312.
- [5] H.W. Bersch, Arch. Pharm. 1958, 291, 491.
- [6] S. Naruto, S. Arakawa, H. Kaneko, Tetrahedron Lett. 1968, 1705; N. Takao, K. Iwasa, M. Kamigauchi, M. Sugiura, Chem. Pharm. Bull. (Tokyo) 1978, 26, 1880.
- [7] N. Takao, N. Bessho, M. Kamigauchi, K. Iwasa, K. Tomita, T. Fujiwara, S. Fujii, *Tetrahedron Lett.* 1979, 495; N. Takao, N. Morita, M. Kamigauchi, K. Iwasa, K. Tomita, T. Fujiwara, S. Fujii, *Acta Crystallogr.*, Sect. B 1981, 37, 2043.
- [8] N. Takao, M. Kamigauchi, K. Iwasa, K. Tomita, T. Fujiwara, A. Wakahara, Tetrahedron 1979, 35, 1099.
- [9] H. Shimanouchi, Y. Sasada, K. Wakisaka, T. Kametani, M. Ihara, Acta Crystallogr., Sect. B 1970, 26, 607.
- [10] E. R. Lippincott, R. Schroeder, J. Chem. Phys. 1955, 23, 1099.
- [11] T. Kametani, T. Honda, M. Ihara, J. Chem. Soc., Perkin Trans. 2 1973, 1605.